Abstract

A joint theoretical and experimental investigation of the influence of the surface permeability and roughness on the stability and laminar–turbulent transition of a supersonic flat-plate boundary layer at a free-stream Mach number of $M_{\infty }=2$ has been performed. Good quantitative agreement of the experimental data obtained with artificially generated disturbances performed on models with various porous inserts and calculations based on linear stability theory has been achieved. An increase of the pore size and porous-coating thickness leads to a boundary layer destabilization that accelerates the laminar–turbulent transition. It is shown that as a certain (critical) roughness value is reached, with an increase in the thickness of the rough and porous coating, the boundary layer stability diminishes and the laminar–turbulent transition is displaced towards the leading edge of the model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.