Abstract
Global climate change is the major cause behind unexpected fluctuations in temperature. In recent years, application of nanotechnology also has become widespread and nanomaterials are constantly being released into aquatic environments, posing a potential risk to various organisms and ecosystems. The lack of detailed understanding of how multiple stressors work, and how they differ from single stressors, impede to assess their combined effect on aquatic organisms and ecosystems. The prime aim of the current investigation is to decipher the toxicity of ZnO-NP after simultaneous exposure to a global environmental stressor, elevated temperature for 14 days, followed by a 7 days recovery period, on the eco-physiological responses of mud crab Scylla serrata collected from Sundarbans. Physiological energetics such as ingestion, assimilation, absorption, respiration, and excretion rates were measured to determine the Scope for growth (SfG). Additionally, we assessed various biomarkers from different levels of biological organisation (antioxidant, detoxification defence mechanisms, and lipid peroxidation levels) of the species. Combined stress attenuated the SfG in crabs which deteriorated further in the recovery phase. Oxidative stress also exacerbated under coalesced stress condition. Recovery was not observed in crabs with increased lipid peroxidation level under combined stress conditions. Elevated temperature disturbed the energy budget of crabs as mirrored by diminished energy left for compensatory actions under added metal stress, ultimately sensitizing the animals to ZnO NP pollutants. The current results advocate future ocean temperature to aggravate the impact of metal NP pollution and induce oxidative damage in S. serrata.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have