Abstract

On 2 December 2020, a moderate and shallow Mw = 4.6 earthquake occurred in Boeotia (Central Greece) near the city of Thiva. Despite its magnitude, the co-seismic ground deformation field was detectable and measurable by Sentinel-1, ascending and descending, synthetic aperture interferometry radar (InSAR) acquisitions. The closest available GNSS station to the epicenter, located 11 km west, measured no deformation, as expected. We proceeded to the inversion of the deformation source. Moreover, we reassessed seismological data to identify the activated zone, associated with the mainshock and the aftershock sequence. Additionally, we used the rupture plane information from InSAR to better determine the focal mechanism and the centroid location of the mainshock. We observed that the mainshock occurred at a shallower depth and the rupture then expanded downdip, as revealed by the aftershock distribution. Our geodetic inversion modelling indicated the activation of a normal fault with a small left-lateral component, length of 2.0 km, width of 1.7 km, average slip of 0.2 m, a low dip angle of 33°, and a SW dip-direction. The inferred fault top was buried at a depth of ~0.5 km, rooted at a depth of ~1.4 km, with its geodetic centroid buried at 1.0 km. It was aligned with the Kallithea fault. In addition, the dip-up projection of the modeled fault to the surface was located very close (~0.4 km SW) to the mapped (by existing geological observations) trace of the Kallithea fault. The ruptured area was settled in a transition zone. We suggest the installation of at least one GNSS and seismological station near Kallithea; as the activated zone (inferred by the aftershock sequence and InSAR results) could yield events with M ≥ 5.0, according to empirical laws relating to rupture zone dimensions and earthquake magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.