Abstract
BackgroundHuman cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and long-term neurological and sensory sequelae following congenital infection.Several Authors sustain a key role of HCMV envelope glycoproteins, such as gB, gN and gO - mainly involved in cell targeting, viral penetration and spread - as putative virulence factors. The genes coding for these glycoproteins possess hypervariable regions, resulting in a number of genetic variants in circulating clinical strains. Considering that the genetic polymorphisms underlying the specific differences between gB, gN and gO genotypes can influence the ability of HCMV to preferentially target specific host cells, it is very likely that they play an important role in defining HCMV infection outcome.In the present study, we analysed HCMV gB, gN and gO gene polymorphisms in viral strains isolated from paediatric patients with congenital or post-natal infection, to investigate whether specific genetic variants may be associated with congenital infection.MethodsThe restriction fragment polymorphisms of genes coding for HCMV gB (UL55), gN (UL73) and gO (UL74) were investigated by analysing viral DNA extracted from 40 urine samples of as many paediatric patients with congenital or post-natal HCMV infection. Randomly selected samples were subjected to DNA sequencing and phylogenetic analysis. Statistical analysis was performed using Fisher’s exact test to assess the significance of single and combined glycoprotein genotypes frequency distribution. Statistical significance was considered at a P <0.05.ResultsWhile gB genomic variants were quite homogeneously represented in both paediatric groups, the gN4 genotype significantly prevailed in congenitally infected children (89.5 %) vs post-natally infected children (47.6 %), with a predominance of the gN4c variant (47.4 %). A similar trend was observed for gO3 (52.6 % vs 19 %).Concerning genotypes association, a statistically significant (P = 0.037) gN4-gO3 combination was found specifically in the congenitally infected group.ConclusionsThe results indicate that the gN4 (mostly the gN4c variant) and gO3 combined genotypes could provide useful markers of congenital infection and represent suitable candidate molecules for prophylactic vaccine preparations.
Highlights
Human cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and long-term neurological and sensory sequelae following congenital infection
The consequences of HCMV congenital disease have been reportedly considered as exceeding that caused by other childhood diseases [8] so that the virus has been assigned the highest priority for vaccine development [9] even though, to date, there is no licensed vaccine
Many studies are still addressing the characterization of HCMV strains and the mechanisms being responsible for infection in utero, with the goal of finding reliable markers to distinguish congenital from post-natal infections
Summary
Human cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and long-term neurological and sensory sequelae following congenital infection. Several Authors sustain a key role of HCMV envelope glycoproteins, such as gB, gN and gO - mainly involved in cell targeting, viral penetration and spread - as putative virulence factors. The genes coding for these glycoproteins possess hypervariable regions, resulting in a number of genetic variants in circulating clinical strains. Considering that the genetic polymorphisms underlying the specific differences between gB, gN and gO genotypes can influence the ability of HCMV to preferentially target specific host cells, it is very likely that they play an important role in defining HCMV infection outcome. We analysed HCMV gB, gN and gO gene polymorphisms in viral strains isolated from paediatric patients with congenital or post-natal infection, to investigate whether specific genetic variants may be associated with congenital infection
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have