Abstract
We demonstrate a combined frequency and time domain investigation of injection-locked, constriction-based spin Hall nano-oscillators by Brillouin light scattering (BLS) and the time-resolved magneto-optical Kerr effect (TR-MOKE). This was achieved by applying an ac current in the GHz regime in addition to the dc current which drives auto-oscillations in the constriction. In the frequency domain, we analyze the width of the locking range, the increase in intensity, and the reduction in the linewidth as a function of the applied direct current. Then, we show that the injection locking of the auto-oscillation allows for its investigation by TR-MOKE measurements, a stroboscopic technique that relies on a phase stable excitation, in this case given by the synchronisation to the microwave current. Field sweeps at different dc currents clearly demonstrate the impact of the spin current on the Kerr amplitude. Two-dimensional TR-MOKE and BLS maps show a strong localization of the auto-oscillation within the constriction, independent of the external locking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.