Abstract

Pulsed electromagnetic field (PEMF) therapy and melatonin (MEL) supplementation are expected to be important strategies for the treatment of osteoporosis. The aim of the current study was to investigate the efficacy of PEMF therapy, MEL supplementation, a combination of PEMF therapy, and MEL supplementation (PEMF + MEL) in mice with bilateral ovariectomy (OVX)-induced osteoporosis. Forty 12-week-old female C57/BL mice were randomly assigned to five groups (n = 8/group): OVX, PEMF, MEL, PEMF + MEL, and sham-operation (sham) groups. All mice in the first four groups were subjected to OVX. The mice in the PEMF and PEMF + MEL groups were exposed to PEMF (75 Hz, 1.6 mT, 1 h/day for 12 weeks), while those in the MEL and PEMF + MEL groups were administered MEL (50 mg/kg, i.p.). Body mass, micro-computed tomography, histology, immunohistochemistry, and real-time polymerase chain reaction were performed. PEMF + MEL treatment enhanced bone volume fraction (BV/TV) 2.2-fold over OVX control (P < 0.001) and increased expression levels of collagen type I (COL1) 1.9-fold and bone morphogenetic protein 2 (BMP2) 2.5-fold. PEMF + MEL also reduced the ratio of bone surface/bone volume (BS/BV) by 40% (P < 0.05) and appeared to reduce the number of osteoclasts in the metaphysis area. Preservation of bone value and bone microarchitecture in the combined therapy group were found to be superior to those in the single treatment groups. However, there were no apparent differences between the PEMF and MEL groups. The use of a combination of PEMF therapy and MEL supplementation may be an effective method to treat osteoporosis. © 2021 Bioelectromagnetics Society.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call