Abstract

We report on Ga-doped 3C–SiC epitaxial layers grown on on-axis (0001) 6H–SiC substrates using the vapor-liquid-solid technique and different Si1−xGax melts. The resulting samples have been investigated using secondary ion mass spectroscopy (SIMS), micro-Raman spectroscopy (μ-R) and, finally, low temperature photoluminescence (LTPL) spectroscopy. From SIMS measurements we find Ga concentrations in the range of 1018 cm−3, systematically accompanied by high nitrogen content. In good agreement with these findings, the μ-R spectra show that the Ga-doped samples are n-type, with electron concentrations close to 2×1018 cm−3. As expected, the LTPL spectra are dominated by strong N–Ga donor-acceptor pair (DAP) transitions. In one sample, a weak additional N–Al DAP recombination spectrum is also observed, showing the possibility to have accidental codoping with Ga and Al simultaneously. This was confirmed on a non-intentionally doped 3C–SiC (witness) sample on which, apart of the usual N and Al bound exciton lines, a small feature resolved at 2.35 eV comings from neutral Ga bound excitons. Quantitative analyses of the DAP transition energies in the Ga-doped and witness sample gave 346 meV for the optical binding energy of Ga acceptors in 3C–SiC against 251 meV for the Al one. The conditions for the relative observa-tion of Ga and Al related LTPL features are discussed and the demonstration of room temperature luminescence using Ga doping is done.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call