Abstract

The specimens of AZ91–xCe(x = 0, 0.3, 0.6, 0.9, 1.2, mass fraction wt%) with different thicknesses were prepared by die casting process, their as-cast microstructure and room temperature mechanical properties were investigated to analyze the change rule of microstructure and mechanical properties of AZ91 magnesium alloy under combined effects of cooling rate and cerium content. The results show that, the microstructure and mechanical properties of AZ91 magnesium alloy were twofold influenced by cooling rate and cerium content. With the increase of cooling rate and Ce content, the average as-cast grain size is evidently refined; the amount of β-Mg17Al12 decreases and distribution becomes discrete. While decreasing cooling rate or increasing Ce content, Al4Ce phase is more and the morphology tends to strip and needle from granular and short rod-like. The tensile strength and elongation of AZ91–xCe magnesium alloy are improved with increasing cooling rate. With the increase of Ce content, the tensile strength and elongation of AZ91–xCe magnesium alloy increased first and decreased afterwards, besides the action of Ce to improve tensile strength and elongation is more evident under faster cooling rate. Mechanical properties of samples are optimal in this work, when Ce content is 0.96% and cooling rate is 39.6 K s−1, tensile strength (259.7 MPa) and elongation (5.5%) are reached maximum, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call