Abstract

In this work, the crystal plasticity finite element (CPFE) simulations and experiments of nanoindentation and tensile tests are conducted to obtain the load–displacement curves of primary α grains and the true stress–true strain curves of equiaxed β aggregate, respectively. The satisfying agreement of the experimental and simulated curves demonstrates that proposed strategy could successfully identify the crystal plasticity constitutive parameters for Ti-7333 alloy, as well as for other near-β titanium alloy. Based on simulated results, the activation of slip systems and the ratio of critical resolved shear stress of basal slip to prismatic slip in primary α grains are discussed. The evolution of geometrically necessary dislocation density during tensile deformation is investigated. These results not only provide accurate parameters for mechanical behavior prediction of Ti-7333 alloy by CPFE simulations, but also contribute to further understandings in deformation mechanism of titanium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.