Abstract
We examined the contribution of endothelial relaxing factors and potassium channels in actions of CPCA, potent adenosine A2 receptor agonist, on isolated intact male rat femoral artery (FA). CPCA produced concentration-dependent relaxation of FA, which was notably, but not completely, reduced after endothelial denudation. DPCPX, A1 receptor antagonist, had no significant effect, while SCH 58261 (A2A receptor antagonist) notably reduced CPCA-evoked effect. Pharmacological inhibition of nitric oxide synthase or cyclooxygenase comparably reduced CPCA-evoked action, still in a lesser degree than after denudation. In the presence of buffer with high K+ (100 mM), CPCA-produced relaxations were almost abolished. TEA (nonselective KCa blocker), glibenclamide (KATP blocker), Ba++ (KIR blocker), or ouabain (Na+/K+-ATPase inhibitor) did not change CPCA-induced relaxation. Concentration-response curve for CPCA was significantly shifted to the right after the incubation of apamin (SK channel blocker). CPCA produced concentration-dependent relaxation of FA that was partly dependent on endothelial cells. Endothelium-related portion of CPCA-elicited effect was mediated by combined action of endothelial NO, prostacyclin, and EDHF after activation of endothelial A2A receptors. Small conductance KCa channels were involved in this action.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have