Abstract

Excessive application of nitrogen fertilizer during rice cultivation leads to progressive soil contamination in the long term and increases production costs. An alternative to reduce over fertilization is to partially replace the fertilizer with microbes that promote nutrition and growth, such as arbuscular mycorrhizal fungi (AMF). We investigated the combination of four different rates of AMF (M): (M0: 0 g polybag−1, M1: 15 g polybag−1, M2: 30 g polybag−1, and M3: 45 g polybag−1) and three rates of nitrogen (N) fertilizer: (N0: 0 kg N ha−1, N1: 90 kg N ha−1, N2: 180 kg N ha−1) on Trisakti rice cultivar cultivated in polybag. Our findings indicate that the combination of 45 g AMF polybag−1 and 180 kg N ha−1 decreased soil bulk density by 38.02% and 37.24%, increased soil pH by 14.81% and 14.95%, soil porosity by 60.68% and 61.09%, soil organic matter by 28.62% and 30.46%, total N by 92.59% and 89.66%, available phosphorus by 30.12% and 29.85%, available potassium by 3.75% and 4.01%, rice plant height by 19.19% and 19.79%, tiller number by 25.27% and 26.08%, SPAD by 20.71% and 20.62%, flag leaf area by 107.76% and 108.02%, panicle length by 49.72% and 52.31%, panicle number by 67.44% and 72.35%, 1000-grain weight by 30.70% and 32.44%, root dry matter by 54.34% and 53.69%, shoot dry matter by 26.08% and 28.26%, root length by 54.68% and 56.44%, root volume by 42.73% and 43.37%, and N uptake by 107.93% and 108.06% compared to control during the early and late seasons, respectively. Conclusively, the combined application of AMF and N fertilizer increased the physiochemical properties, rice growth, rice productivity, and N uptake compared to AMF alone, N fertilizer alone, and the control treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call