Abstract

We investigate a combined analysis of an energy band diagram and an equivalent circuit on nanocrystal (NC) solids. We prepared a flat silicon-NC solid in order to carry out the analysis. An energy band diagram of a NC solid is determined from DC transport properties. Current-voltage characteristics, photocurrent measurements, and conductive atomic force microscopy images indicate that a tunneling transport through a NC solid is dominant. Impedance spectroscopy gives an equivalent circuit: a series of parallel resistor-capacitors corresponding to NC/metal and NC/NC interfaces. The equivalent circuit also provides an evidence that the NC/NC interface mainly dominates the carrier transport through NC solids. Tunneling barriers inside a NC solid can be taken into account in a combined capacitance. Evaluated circuit parameters coincide with simple geometrical models of capacitances. As a result, impedance spectroscopy is also a useful technique to analyze semiconductor NC solids as well as usual DC transport. The analyses provide indispensable information to implement NC solids into actual electronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.