Abstract

Nanocrystal (NC) solids are an exciting class of materials, whose physical properties are tunable by choice of the NCs as well as the strength of the interparticle coupling. One can consider these NCs as "artificial atoms" in analogy to the formation of condensed matter from atoms. Akin to atomic doping, the doping of a semiconducting NC solid with impurity NCs can drastically alter its electronic properties. A high degree of complexity is possible in these artificial structures by adjusting the size, shape, and composition of the building blocks, which enables "designer" materials with targeted properties. Here, we present the doping of the PbSe NC solids with a series of Au xAg1- x alloy nanoparticles (NPs). A combination of temperature-dependent electrical conductance and Seebeck coefficient measurements and room-temperature Hall effect measurements demonstrates that the incorporation of metal NPs both modifies the charge carrier density of the NC solids and introduces energy barriers for charge transport. These studies point to charge carrier injection from the metal NPs into the PbSe NC matrix. The charge carrier density and charge transport dynamics in the doped NC solids are adjustable in a wide range by employing the Au xAg1- x NP with different Au:Ag ratio as dopants. This doping strategy could be of great interest for thermoelectric applications taking advantage of the energy filtering effect introduced by the metal NPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.