Abstract

We investigated the effect of composition on the phase and extrinsic magnetic properties of TbCu7-type SmFe-based compounds using a combinatorial sputtering technique. Composition-spread thin films of SmFex (x=6.4–12.7) and SmFexN (x=6.8–12.8) were synthesized using a linear shutter-assisted combinatorial sputtering technique. A high-throughput composition, phase, and magnetic characterization were performed on 18 different locations along the film using X-ray diffraction (XRD), X-ray fluorescence (XRF), and magneto-optical Kerr effect (MOKE) magnetometry. The optimal composition with the highest fraction of the main phase was found to be in SmFe9.8 and SmFe9.5N and beyond this composition, the α-Fe secondary ferromagnetic phase emerges. The coercive field and remanence of the SmFe9.5N are estimated to be ∼0.8 T and ∼1.2 T, respectively. Further, scanning transmission electron microscopy (STEM) was performed at SmFe9.5N to correlate the microstructure with their extrinsic magnetic properties. Overall, this study demonstrates the impact of composition variation on the phase and extrinsic magnetic properties of TbCu7-type SmFe-based compounds, which can be utilized to tailor magnetic properties for targeted advanced magnet applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.