Abstract
This paper will be devoted to the study of weighted (deformed) free Poisson random variables from the viewpoint of orthogonal polynomials and statistics of non-crossing partitions. A family of weighted (deformed) free Poisson random variables will be defined in a sense by the sum of weighted (deformed) free creation, annihilation, scalar, and intermediate operators with certain parameters on a weighted (deformed) free Fock space together with the vacuum expectation. We shall provide a combinatorial moment formula of non-commutative Poisson random variables. This formula gives us a very nice combinatorial interpretation to two parameters of weights. One can see that the deformation treated in this paper interpolates free and boolean Poisson random variables, their distributions and moments, and yields some conditionally free Poisson distribution by taking limit of the parameter.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have