Abstract

To assess the feasibility and outcomes of combination short-course preoperative radiation, resection, and reduced-field (tumor bed without operative field coverage) high-dose postoperative radiation for patients with solid tumors mainly involving the spine and pelvis. Between 1982 and 2006, a total of 48 patients were treated using this treatment strategy for solid tumors involving bone. Radiation treatments used both photons and protons. Of those treated, 52% had chordoma, 31% had chondrosarcoma, 8% had osteosarcoma, and 4% had Ewing's sarcoma, with 71% involving the pelvis/sacrum and 21% elsewhere in the spine. Median preoperative dose was 20 Gy, with a median of 50.4 Gy postoperatively. With 31.8-month median follow-up, the 5-year overall survival (OS) rate is 65%; 5-year disease-free survival (DFS) rate, 53.8%; and 5-year local control (LC) rate, 72%. There were no significant differences in OS, DFS, and LC according to histologic characteristics. Between primary and recurrent disease, there was no significant difference in OS rates (74.4% vs. 51.4%, respectively; p = 0.128), in contrast to DFS (71.5% vs. 18.3%; p = 0.0014) and LC rates (88.9% vs. 30.9%; p = 0.0011) favoring primary disease. After resection, 10 patients experienced delayed wound healing that did not significantly impact on OS, DFS, or LC. This approach is promising for patients with bone sarcomas in which resection will likely yield close/positive margins. It appears to inhibit tumor seeding with an acceptable rate of wound-healing complications. Dose escalation is accomplished without high-dose preoperative radiation (likely associated with higher rates of acute wound healing delays) or large-field postoperative radiation only (likely associated with late normal tissue toxicity). The LC and DFS rates are substantially better for patients with primary than recurrent sarcomas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.