Abstract
The novel class of spirocyclic σ(1) ligands 3 (6',7'-dihydro-1'H-spiro[piperidine-4,4'-pyrano[4,3-c]pyrazoles]) was designed by the combination of the potent σ(1) ligands 1 and 2 in one molecule. Thorough structure affinity relationships were derived by the variation of the substituents in position 1', 1, and 6'. Whereas the small electron rich methylpyrazole heterocycle was less tolerated by the σ(1) receptor protein, the introduction of a phenyl substituent instead of the methyl group led to ligands with a high σ(1) affinity. It is postulated that the additional phenyl substituent occupies a previously unrecognized hydrophobic region of the σ(1) receptor resulting in additional lipophilic interactions. The spirocyclic pyranopyrazoles are very selective against the σ(2) subtype, the PCP binding site of the NMDA receptor, and further targets. Despite high σ(1) affinity, the cyclohexylmethyl derivative 17i (K(i) (σ(1)) = 0.55 nM) and the isopentenyl derivative 17p (K(i) (σ(1)) = 1.6 nM) showed only low antiallodynic activity in the capsaicin assay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.