Abstract

The flavour analysis of volatile compounds remains challenging not only because of their diversity in properties and dynamic range, but also due to the high background noise from food matrix constituents. To improve sensitivity and specificity for a multiclass range of compounds, a combination of solid phase micro-extraction (SPME) devices and low energy electron ionisation (LE-EI) was proposed for the analysis of 36 volatile compounds, using coffee as a model matrix. From a pre-evaluation of devices and extraction modes, the combined use of direct immersion-stir bar sorptive extraction and headspace-thin-film SPME (SBSE-TFSPME) was selected to increase compound recovery, and further optimised for extraction temperature (88 °C) and time (110 min). Furthermore, to complement sample preparation by improving method specificity, a LE-EI technique was developed by evaluating the effect of ionisation energy, source temperature, and emission current on the formation of the diagnostic molecular ions and their preservation. This LE-EI method (15 eV, 150 °C, 0.3 μA) was validated with SBSE-TFSPME as a complete workflow in coffee matrices, and was found to possess good repeatability (intra-day RSD: 1.6–7.3 %), intermediate precision (inter-day RSD: 4.1–12.2 %), and linearity (R2 > 0.98). Even for complex coffee samples, the method detection limit reached the pg/mL range (e.g. 2,4,5-trimethylthiazole was detected at 15 pg/mL). In conclusion, this study provided insights on the potential of SPME and LE-EI to improve the sensitivity and specificity of analysis for a range of volatile compounds from food and other complex matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call