Abstract

Composite scaffolds of poly(l-lactide acid) and hydroxyapatite are of great interest in bone tissue engineering, but their mechanical properties are typically inferior to scaffolds of pure poly(l-lactide acid) due to agglomeration of the particles and weak interfacial component interaction. Fabrication strategies like double sonication of hydroxyapatite or increasing the amount of this inorganic filler do not effectively enhance the mechanical performance. In this study, poly(l-lactide acid) composites combining two types of fillers, mesoporous silica (SiO2) nanoparticles and hydroxyapatite, were developed to reinforce the poly(l-lactide acid) scaffold without any loss of bioactivity. A 5% addition of SiO2 nanoparticles to hydroxyapatite nanopowder and subjecting the scaffold formulation to double sonication increased the Young’s modulus from 5 MPa (pure poly(l-lactide acid) scaffold) to almost 7 MPa (poly(l-lactide acid)/hydroxyapatite/SiO2 scaffold). In addition, the composite was able to deposit a layer of biomimetic hydroxyapatite both on the surface and interior of the scaffold after 21 days of immersion in a simulated body fluid. The manufacturing method was straightforward and economically viable and does not require any chemical modification of the particles’ surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.