Abstract

BACKGROUND. Head and neck CT can be limited by dental hardware artifact. Both postprocessing-based iterative metal artifact reduction (IMAR) and virtual monoenergetic imaging (VMI) reconstruction in dual-energy CT (DECT) can reduce metal artifact. Their combination is poorly described for single-source DECT systems. OBJECTIVE. The purpose of this study was to compare metal artifact reduction between VMI, IMAR, and their combination (VMIIMAR) in split-filter single-source DECT of patients with severe dental hardware artifact. METHODS. This retrospective study included 44 patients (nine woman, 35 men; mean age, 66.0 ± 10.4 years) who underwent head and neck CT and had severe dental hardware artifact. Standard, VMI, IMAR, and VMIIMAR images were generated; VMI and VMIIMAR were performed at 40, 70, 100, 120, 150, and 190 keV. ROIs were placed to measure corrected attenuation in pronounced hyperattenuating and hypoattenuating artifacts and artifact-impaired soft tissue and to measure corrected artifact-impaired soft-tissue noise. Two radiologists independently assessed soft-tissue interpretability (1-5 scale), and pooled ratings were analyzed. Readers selected the preferred reconstruction for each patient. RESULTS. Mean hyperattenuating artifact-corrected attenuation was 521.0 HU for standard imaging, 496.4-892.2 HU for VMI, 48.2 HU for IMAR, and 32.8-91.0 HU for VMIIMAR. Mean hypoattenuating artifact-corrected attenuation was -455.1 HU for standard imaging, -408.5 to -679.9 HU for VMI, -37.3 for IMAR, and -17.8 to -36.9 HU for VMIIMAR. Mean artifact-impaired soft tissue-corrected attenuation was 10.8 HU for standard imaging, -0.6 to 24.9 HU for VMI, 4.3 HU for IMAR, and -2.0 to 7.8 HU for VMIIMAR. Mean artifact-impaired soft tissue-corrected noise was 58.7 HU for standard imaging, 38.2 to 129.7 HU for VMI, 11.0 HU for IMAR, and 5.8 to 45.6 HU for VMIIMAR. Median soft-tissue interpretability was 1.2 for standard imaging, 1.1-1.2 for VMI, 3.7 for IMAR, and 2.0-3.8 for VMIIMAR. Artifact-impaired soft tissue-corrected attenuation and soft-tissue interpretability significantly improved (p < .05) for VMIIMAR versus IMAR only at 100 keV. The two readers preferred VMIIMAR at 100 keV in 56.8% and 59.1% of examinations. CONCLUSION. For reducing severe artifact due to dental material, IMAR has greater effect than VMI. Though the results for IMAR and VMIIMAR were similar overall, VMIIMAR had a small benefit at 100 keV. CLINICAL IMPACT. VMI and IMAR techniques in split-filter DECT may be combined for clinical head and neck imaging to reduce artifact from dental hardware and improve image quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call