Abstract
The antioxidant enzymes play the crucial role in inhibiting mutton spoilage. In this study, visible near-infrared (Vis-NIR) hyperspectral imaging (HSI) combined with entropy weight method (EWM) was developed for the first time to evaluate the antioxidant properties of Tan mutton. The comprehensive index of antioxidant enzymes (AECI) consisting of peroxidase (49.34%), catalase (37.97%) and superoxidase (12.69%) was constructed by the EWM. Partial least squares regression, least squares support vector machine and artificial neural networks (ANN) were developed based on characteristic wavelengths extracted by successful projections algorithm, uninformative variable selection, iteratively retains informative variables (IRIV), regression coefficient and competitive adaptive reweighted sampling (CARS). The textural features (TF) were extracted by the gray level co-occurrence matrix and fused with the spectral data to establish models. Visualization of the changes in antioxidant enzyme activity was constructed from the optimal model. In addition, two-dimensional correlation spectra (2D-COS) with AECI as a perturbation variable was used to identify spectral features, revealing chemical bond changes order under the characteristic peaks at 612–799–473–708–559 nm. The results showed that the IRIV-CARS-TF-ANN model performed the best, with prediction set coefficient of determination (RP2) of 0.8813, which improved 2.12%, 1.11% and 2.77% over the RP2 of full band, IRIV and IRIV-CARS, respectively. It was suggested that fusion data of HSI may effectively predict the activity of antioxidant enzymes in Tan mutton.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have