Abstract

Wide-field frequency-domain fluorescence lifetime imaging microscopy (FLIM) is an established technique to determine fluorescence lifetimes. Disadvantage of wide-field imaging is that measurements are compromised by out-of-focus blur. Conventional scanning confocal typically means long acquisition times and more photo bleaching. An alternative is spinning-disc confocal whereby samples are scanned simultaneously by thousands of pinholes, resulting in a virtually instantaneous image with more than tenfold reduced photo bleaching. A spinning disc unit was integrated into an existing FLIM system. Measurements were made of fluorescent beads with a lifetime of 2.2 ns against a 5.3 ns fluorescent background outside the focal plane. In addition, living HeLa cells were imaged with different lifetimes in the cytosol and the plasma membrane. In spinning-disc mode, a lifetime of the beads of 2.8 ns was measured, whereas in wide field a lifetime of 4.1 ns was measured. Lifetime contrast within living HeLa cells could be resolved with the spinning-disc unit, where this was impossible in wide field. Integration of a spinning-disc unit into a frequency-domain FLIM instrument considerably reduces artifacts, while maintaining the advantages of wide field. For FLIM on objects with 3D lifetime structure, spinning-disc is by far preferable over wide-field measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.