Abstract

Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call