Abstract

We present a design method and numerical results describing the construction of distributed feedback grating filters that support discrete combs of transmission resonances. These filter designs define open superstructure grating resonators with transmission channels that can be placed at predetermined frequencies, such as those defined by the wavelength division multiplexing grid or by a secondary frequency comb source. Focusing on a specific example with 40 GHz channel spacing, we optimize an active structure that defines three low-threshold lasing modes. How our design approach relates to filter synthesis techniques based on cascaded grating resonators is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.