Abstract
BackgroundMonazite, a moderately common light rare earth element (LREE) and thorium phosphate mineral, has chemical, age, and isotopic characteristics that are useful in the investigation of the origin and evolution of crustal melts and fluid-rock interactions. Multiple stages of growth and partial recrystallization commonly observed in monazite inevitably require microspot chemical and isotopic analyses, for which well-characterized reference materials are essential to correct instrumental biases. In this study, we introduce new monazite reference materials COM-1 and Hongcheon for the use in the microspot analysis of oxygen isotopic composition.FindingsCOM-1 and Hongcheon were derived from a late Mesoproterozoic (~ 1080 Ma) pegmatite dyke in Colorado, USA, and a Late Triassic (~ 230 Ma) carbonatite-hosted REE ore in central Korea, respectively. The COM-1 monazite has much higher levels of Th (8.77 ± 0.56 wt.%), Si (0.82 ± 0.07 wt.%) and lower REE contents (total REE = 49.5 ± 1.2 wt.%) than does the Hongcheon monazite (Th, 0.23 ± 0.11 wt.%; Si, < 0.1 wt.%; total REE, 59.9 ± 0.7 wt.%). Their oxygen isotopic compositions (δ18OVSMOW) were determined by gas-source mass spectrometry with laser fluorination (COM-1, 6.67 ± 0.08‰; Hongcheon-1, 6.60 ± 0.02‰; Hongcheon-2, 6.08 ± 0.07‰). Oxygen isotope measurements performed by a Cameca IMS1300-HR3 ion probe showed a strong linear dependence (R2 = 0.99) of the instrumental mass fractionation on the total REE contents.ConclusionsWe characterized chemical and oxygen isotopic compositions of COM-1 and Hongcheon monazites. Their internal homogeneity in oxygen isotopic composition and chemical difference provide an efficient tool for calibrating instrumental mass fractionation occurring during secondary ion mass spectrometry analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.