Abstract

We extend the colourful complete bipartite subgraph theorems of [G. Simonyi, G. Tardos, Local chromatic number, Ky Fan's theorem, and circular colorings, Combinatorica 26 (2006), 587--626] and [G. Simonyi, G. Tardos, Colorful subgraphs of Kneser-like graphs, European J. Combin. 28 (2007), 2188--2200] to more general topological settings. We give examples showing that the hypotheses are indeed more general. We use our results to show that the topological bounds on chromatic numbers of digraphs with tree duality are at most one better than the clique number. We investigate combinatorial and complexity-theoretic aspects of relevant order-theoretic maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.