Abstract
Reliable differentiation of uveal melanoma and choroidal nevi is crucial to guide appropriate treatment, preventing unnecessary procedures for benign lesions and ensuring timely treatment for potentially malignant cases. The purpose of this study is to validate deep learning classification of uveal melanoma and choroidal nevi, and to evaluate the effect of colour fusion options on the classification performance. A total of 798 ultra-widefield retinal images of 438 patients were included in this retrospective study, comprising 157 patients diagnosed with UM and 281 patients diagnosed with choroidal naevus. Colour fusion options, including early fusion, intermediate fusion and late fusion, were tested for deep learning image classification with a convolutional neural network (CNN). F1-score, accuracy and the area under the curve (AUC) of a receiver operating characteristic (ROC) were used to evaluate the classification performance. Colour fusion options were observed to affect the deep learning performance significantly. For single-colour learning, the red colour image was observed to have superior performance compared to green and blue channels. For multi-colour learning, the intermediate fusion is better than early and late fusion options. Deep learning is a promising approach for automated classification of uveal melanoma and choroidal nevi. Colour fusion options can significantly affect the classification performance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have