Abstract

We present here a general strategy to translate potential change at a potentiometric probe into a tunable color readout. It is achieved with a closed bipolar electrode where the ion-selective component is confined to one end of the electrode while color is generated at the opposite pole, allowing one to physically separate the detection compartment from the sample. An electrical potential is imposed across the bipolar electrode by solution contact such that the potentiometric signal change at the sample side modulates the potential at the detection side. This triggers the turnover of a redox indicator in the thin detection layer until a new equilibrium state is established. The approach is demonstrated in separate experiments with a chloride responsive Ag/AgCl element and a liquid membrane based calcium-selective membrane electrode, using the redox indicator ferroin in the detection compartment. The principle can be readily extended to other ion detection materials and optical readout principles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.