Abstract

Development of specific signal reporters with signal amplification effect are highly needed for sensitive and accurate detection of pathogen. Herein, we design a colorimetric immunosensing nanosystem based on liposome encapsulated quantum dots-sized MnO2 nanozyme (MnO2QDs@Lip) as a signal reporter for ultrasensitive and fast detection of SARS-CoV-2 antigen. The pathogenic antigens captured and separated by antibody-conjugated magnetic beads (MBs) are further connected with antibody-modified MnO2QDs@Lip to form a sandwich-like immunocomplex structure. After triggered release, MnO2 QDs efficiently catalyze colorless 3,3′,5,5′-tetramethylbenzidine (TMB) to blue oxidized TMB, which can be qualitatively observed by naked eyes and quantitatively analyzed by UV–Vis spectra or smartphone platforms. By taking advantages of immuno-magnetic separation, excellent peroxidase-like catalytic activity of MnO2 QDs, and high encapsulation efficiency of MnO2QDs@Lip, ultrasensitive detection of SARS-CoV-2 antigen ranging from 0.1 pg/mL to 100 ng/mL is achieved within 20 min. The limit of detection (LOD) is calculated to be 65 fg/mL in PBS buffer. Furthermore, real clinical samples of SARS-CoV-2 antigens can be effectively identified by this immunosensing nanosystem with excellent accuracy. This proposed detection nanosystem provides a strategy for simple, rapid and ultrasensitive detection of pathogens and may shed light on the development of new POCT detection platforms for early diagnosis of pathogens and surveillance in public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.