Abstract
Ag nanoparticle-decorated Ti3C2 nanosheets (AgNPs@Ti3C2 NSs) were facilely synthesized via a self-reduction approach, in which Ti3C2 NSs acted as both reductant and supporter. The AgNPs@Ti3C2 NS nanocomposite exhibited excellent peroxidase-like activity with o-phenylenediamine (OPD) and H2O2 as substrates. The catalytic behavior followed the typical Michaelis-Menten kinetics; Michaelis constant (Km) and maximum initial velocity (Vmax) for OPD were 0.263mM and 43.2 × 10-8M-1s, indicating high affinity and high catalytic efficiency towards OPD. The catalytic mechanism was revealed to be an accelerated electron transfer process. Based on the inhibition effect on the peroxidase-like activity of AgNPs@Ti3C2 NSs, a simple, fast, and sensitive colorimetric method for detection of low-weight biothiols (cysteine (Cys), homocysteine (Hcy), and glutathione (GSH)) was developed by measuring the absorbance at 425nm. The colorimetric method displayed wide linear range (50nM to 50μM for Cys, 10nM to 250μM for Hcy, 10nM to 50μM for GSH), low limit of detection (48.5nM for Cys, 5.5nM for Hcy, 7.0nM for GSH), and good selectivity and short assay time (3min). Moreover, the feasibility of this colorimetric sensor was demonstrated by accurately determining Cys in diluted human serum samples; good recovery (95.9-101.0%) and low relative standard deviations (2.8-4.9%) were obtained, showing great promise for point-of-care test in clinical samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have