Abstract

Colorectal cancer ranks as the third most common form of cancer in the United States. The Centres of Disease Control and Prevention report that males and individuals assigned male at birth (AMAB) have a slightly higher incidence of colon cancer than females and those assigned female at birth (AFAB) Black humans are more likely than other ethnic groups or races to develop colon cancer. Early detection of suspicious tissues can improve a person's life for 3-4 years. In this project, we use the EBHI-seg dataset. This study explores a technique called Generative Adversarial Networks (GAN) that can be utilized for data augmentation colorectal cancer histopathology Image Segmentation. Specifically, we compare the effectiveness of two GAN models, namely the deep convolutional GAN (DC-GAN) and the Variational autoencoder GAN (VAE-GAN), in generating realistic synthetic images for training a neural network model for cancer prediction. Our findings suggest that DC-GAN outperforms VAE-GAN in generating high-quality synthetic images and improving the neural network model. These results highlight the possibility of GAN-based data augmentation to enhance machine learning models’ performance in medical image analysis tasks. The result shows DC-GAN outperformed VAE-GAN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.