Abstract

The active lone pair electron effect and highly flexible coordination geometry of Pb2+ prevented the rational construction of metal-organic frameworks (MOFs) but promoted excellent fluorescence tuning. The regulation on organic and alkali templates facilitated the assemblies of three new Pb-MOFs: [Pb2(pia)2(DMA)]·DMA (1), [Pb2(pia)2(DMF)]·1.5DMF (2), and [Pb2(pia)2(DMF)]·NEt3 (3). They were rigid rod-spacer and double-walls frameworks, which possess defective dicubane [Pb4O6] based metal-carboxyl chains constructed from both semidirected and holodirected Pb2+ ions. These MOFs exhibited thermal stability up to 370 °C and unprecedented chemical stability in H2O and acidic (pH 2) and alkaline (pH 12) aqueous solutions, found for the first time in Pb-MOFs. A single-phase and rare-earth-free white-emitting phosphor, 1, was screen out, which showed a near-sunlight and human-vision-friendly broadband spectrum covering the full visible region, possessing the close-to-pure-white chromaticity coordinates of (0.332, 0.347), a near-daylight color temperature of 5696 K, and a high color rendering index of 95. The replacement of DMF as apical ligand and guest in 2 resulted in an intrinsic single and narrow emission at 562 nm with yellow color. The convenient yellow-and-blue color-tuning until white for 2 was realized by either solution or solid blending with blue-emissive H2pia, benefited from their highly matched excitation spectra. Using large NEt3 as template guest induced great framework distortion for 3 and led to white emission with chromaticity coordinates of (0.302, 0.294), stemming from nonequivalent dual emission at 450 and 545 nm. In-depth structure analysis revealed intra-/interchain Pb···Pb interactions in the lead(II)-carboxyl chains greatly affected the photochemical output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.