Abstract

Powders of Y2O3 co-doped with Yb3+ and Er3+ composed of well-crystallized nanoparticles (30 to 50 nm in diameter) with no adsorbed ligand species on their surface are prepared by polymer complex solution method. These powders exhibit up-conversion emission upon 978-nm excitation with a color that can be tuned from green to red by changing the Yb3+/Er3+ concentration ratio. The mechanism underlying up-conversion color changes is presented along with material structural and optical properties.PACS42.70.-a, 78.55.Hx, 78.60.-b

Highlights

  • Up-conversion materials have the ability to convert lower energy near-infrared radiations into higher energy visible radiations

  • Vetrone et al showed that CO32− and OH− species are frequently adsorbed on the surface of sesquioxide nanoparticles [22]. Their high vibrational energies decrease the UC efficiency through multi-phonon relaxations. For this reason we applied polymer complex solution (PCS) synthesis [23] since we found earlier that the PCS method provides sesquioxides with low surface area and defects and no adsorbed species on the surface [24,25,26]

  • In this research we showed that color tuning from green to red can be achieved in Yb3+/Er3+ UC nanoparticle (UCNP) systems on account of changes of Yb3+ sensitizer concentration

Read more

Summary

Introduction

Up-conversion materials have the ability to convert lower energy near-infrared radiations into higher energy visible radiations. These materials have gained considerable attention because of their use in a wide range of important applications, from solid compact laser devices operating in the visible region and infrared quantum counter detectors to three-dimensional displays, temperature sensors, solar cells, anti-counterfeiting, and biological fluorescence labels and probes [1,2,3,4,5,6]. Methods for UC nanoparticle (UCNP) synthesis are of particular interest for use in two-photon bio-imaging, sensitive luminescent bio-labels, and GaAs-coated highly efficient light-emitting diodes [7].

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.