Abstract
Series of UV excited Ba3Lu(PO4)3:Tb3+,Mn2+ phosphors with tunable green to red emissions had been prepared using solid state reactions. Powder X-ray diffraction and Rietveld structure refinement were used to investigate the phase purity and crystal structure of the prepared samples. Under UV excitation, the Ba3Lu(PO4)3:Tb3+,Mn2+ samples exhibited not only the typical Tb3+ emission peaks but also the broad emission band of Mn2+ ions due to the efficient Tb3+→Mn2+ energy transfer which had been verified by luminescence spectra and decay curves. Utilizing the Inokuti-Hirayama model, the Tb3+→Mn2+ energy transfer mechanism was determined to be the electronic dipole–quadrupole interaction. Moreover, the emission spectra of Ba3Lu(PO4)3:0.80Tb3+,0.015Mn2+ sample at different temperatures manifested that our prepared phosphors possessed good thermal stability. The luminescence properties investigation results revealed the potential value of Ba3Lu(PO4)3F:Tb3+,Mn2+ in application for UV excited phosphor converted white light emitting diodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.