Abstract

This paper presents a threshold color image segmentation methodology based on Self-Organizing Maps (SOM) Neural Network. The objective of segmentation methodology is to determine the minimum number of color features in six seed lines ("nh1", "nh2", "nh3", "nh4", "nh5" y "nh6") of seed castor (Ricinus comunnis L.) images for future seed characterization. Seed castor lines are characterized for pigmentation regions that not allow an optimum segmentation process. In some cases, seed pigmentation regions are similar to background make difficult their segmentation characterization. Methodology proposes to segment the seed image in a SOM-based idea in an increasing way until to some of SOM neuron not have allocated none of the image pixels. Several experiments were carried out with others two standard test images ("House" and "Girl") and results are presented both visual and numerical way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.