Abstract

A novel color image histogram equalization approach is proposed that exploits the correlation between color components and it is enhanced by a multi-level smoothing technique borrowed from statistical language engineering. Multi-level smoothing aims at dealing efficiently with the problem of unseen color values, either considered independently or in combination with others. It is applied here to the HSI color space for the probability of intensity and the probability of saturation given the intensity, while the hue is left unchanged. Moreover, the proposed approach is extended by an empirical technique, which is based on a hue preserving non-linear transformation, in order to eliminate the gamut problem. This is the second method proposed in the paper. The equalized images by the two methods are compared to those produced by other well-known methods. The better quality of the images equalized by the proposed methods is judged in terms of their visual appeal and objective figures of merit, such as the entropy and the Kullback–Leibler divergence estimates between the resulting color histogram and the multivariate uniform probability density function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.