Abstract

Harvesting of apple mangoes fruit that simultaneously causes not all apple mango fruits are harvested ripe. Farmers should sort the apple mango manually. So, harvesting in large quantities will take a long time. There are several obstacles to sort the apple mango fruit manually. It needs skills and experiences to sort the apple mangoes fruit and it needs many workers. In addition, when the apple mango is ripe and not immediately sorted, it will be too ripe and decayed, so cause losses. Previous research has already made the apple mango classification system mango level but required an expensive tool and take a long time to process one apple mango. This research proposes a new strategy to measure the ripeness level of apple mango fruit, especially apple mango at low cost, without the expensive device and takes a short time based on the apple mango skin color region using the feed-forward neural network. The test used 214 images consisting of 4 classes. Validation test using k-fold of 7, 9, and 11 with an average accuracy of 90.61%, 91.41%, and 90.82%. Highest accuracy with a value of 91.41% on k-fold 9 while at k-fold 11 accuracy is lower but has the least standard deviation value. A small standard deviation means that the accuracy is more stable than others

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.