Abstract

A single-camera color PIV system that can acquire PIV data of three separated layers has been redesigned, purposing improvement of wind tunnel applicability. We target smoke image that has particle-per-pixel values higher than unity. The system constitutes of a high-power color-coding illuminator and a digital color high-speed video camera. RGB values in recorded image involves severe color contaminations due to five optical and digital sequences (Fig. 1). To quantify this, a snapshot calibration is proposed to describe the contamination matrix equation (Eq. (1)). Taking the inverse matrix (Eq. (2)) allows in-plane PIV in each color layer to be accurately implemented. We also derive mathematical limits to operate the colored smoke PIV, which is explained by the matrix property (Eq (3)). Feasibility of the proposed method has been demonstrated by application to a turbulent wake behind a Delta wing (Fig. 2) and also to a boundary layer flow along heated chocolate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call