Abstract
Shortwave near infrared (SWNIR) and long wave near infrared (LWNIR) spectroscopy with a novel color compensation method were compared to predict soluble solids content of apple. Linear and nonlinear regression models were considered. Eventually, independent component analysis-support vector machine (ICA-SVM) models proved to be superior to other nonlinear models. Rp was 0.9398 and RMSEP was 0.3870% for the optimal model of SWNIR, while Rp was 0.9455 and RMSEP was 0.3691% for that of LWNIR. Moreover, the results showed that color compensation could significantly improve the prediction performance of SWNIR model. Our work implies that SWNIR with color compensation has an obvious prospect in practical industrial use for real-time monitoring apple quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have