Abstract

Colloidal atomic layer deposition (c-ALD) enables the growth of hybrid organic-inorganic oxide shells with tunable thickness at the nanometer scale around ligand-functionalized inorganic nanoparticles (NPs). This recently developed method has demonstrated improved stability of NPs and of their dispersions, a key requirement for their application. Nevertheless, the mechanism by which the inorganic shells form is still unknown, as is the nature of multiple complex interfaces between the NPs, the organic ligands functionalizing the surface, and the shell. Here, we demonstrate that carboxylate ligands are the key element that enables the synthesis of these core-shell structures. Dynamic nuclear polarization surface-enhanced nuclear magnetic resonance spectroscopy (DNP SENS) in combination with density functional theory (DFT) structure calculations shows that the addition of the aluminum organometallic precursor forms a ligand-precursor complex that interacts with the NP surface. This ligand-precursor complex is the first step for the nucleation of the shell and enables its further growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.