Abstract

We investigate the dynamical properties of a colloidal particle in a double cavity. Without external driving, the particle hops between two free-energy minima with transition mean time depending on the system's entropic and energetic barriers. We then drive the particle with a periodic force. When the forcing period is set at twice the transition mean time, a statistical synchronization between particle motion and forcing phase marks the onset of a stochastic resonance mechanism. Comparisons between experimental results and predictions from the Fick-Jacobs theory and Brownian dynamics simulation reveal significant hydrodynamic effects, which change both resonant amplification and noise level. We further show that hydrodynamic effects can be incorporated into existing theory and simulation by using an experimentally measured particle diffusivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.