Abstract
In machine translation, collocation dictionaries are important for selecting accurate target words. However, if the dictionary size is too large it can decrease the efficiency of translation. This paper presents a method to develop a compact collocation dictionary for transitive verb–object pairs in English–Korean machine translation without losing translation accuracy. We use WordNet to calculate the semantic distance between words, and k-nearest neighbor learning to select the translations. The entries in the dictionary are minimized to balance the trade-off between translation accuracy and time. We have performed several experiments on a selected set of verbs extracted from a raw corpus of over 3 million words. The results show that in real-time translation environments the size of a collocation dictionary can be reduced up to 40% of its original size without significant decrease in its accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.