Abstract

Line shifting and broadening coefficients of the anisotropic S(J) lines (v=0, J→v=1, J+2) of the nitrogen molecule were measured at room temperature using high-resolution stimulated Raman spectroscopy. A rotational quantum number dependence of the S(J) line shifts was observed. In order to avoid an asymmetry of experimental origin, a suitable theoretical profile was fitted to the experimental lineshapes. This study allows the testing of the theoretical methods for calculating the line broadening coefficients in anisotropic Raman scattering, which have already been used in the analysis of infrared absorption data. The behaviour of the modified sum rule and the RPA (random phase approximation) methods was studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.