Abstract
High-resolution stimulated Raman spectroscopy was applied to the study of collisional broadening and shifting for rovibrational anisotropic Raman lines of the Fermi dyad of molecular carbon dioxide. The O(J) lines of the ν1 band and the S(J) lines of the 2ν2 band were recorded at 295 K. The pressure-induced line shifts were obtained and compared with the overall shift of the high-density Raman Q-branch. A rotational quantum number dependence of the rovibrational line broadening coefficients was observed. The experimental line broadening coefficients were used in order to check the ability of two theoretical methods (random phase approximation and sum rule) for calculating the line broadening coefficients in anisotropic Raman scattering. © 1998 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.