Abstract
We consider collisional properties of weakly bound heteronuclear molecules (dimers) formed in a two-species mixture of atoms with a large mass difference. We focus on dimers containing light fermionic atoms as they manifest collisional stability due to an effective dimer-dimer repulsion originating from the exchange of the light atoms. In order to solve the dimer-dimer scattering problem we develop a theoretical approach, which provides a physically transparent and quantitative description of this four-atom system in terms of three- and two-body observables. We calculate the elastic scattering amplitude and the rates of inelastic processes such as the trimer formation and the relaxation of dimers into deeply bound molecular states. Irrespective of whether the heavy atoms are bosons or fermions, the inelastic rate can be significantly lower than the rate of elastic collisions. Moreover, the measurement of the inelastic rate which is a four-body observable, can be an efficient and precise tool for determining three-body observables such as the three-body parameter, positions of Efimov states, and their lifetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.