Abstract

A mixture of light and heavy spin-polarized fermionic atoms in an optical lattice is considered. Tunneling of the heavy atoms is neglected such that they are only subject to thermal fluctuations. This results in a complex interplay between light and heavy atoms caused by quantum tunneling of the light atoms. The distribution of the heavy atoms is studied. It can be described by an Ising-like distribution with a first-order transition from homogeneous to staggered order. The latter is caused by an effective nonlocal interaction due to quantum tunneling of the light atoms. A second-order transition is also possible between an ordered and a disordered phase of the heavy atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.