Abstract

This paper is devoted to the effects of velocity on the shapes of six R( J) lines of the ν 3 band of water vapor diluted in N 2. The experiments have been made at room temperature for total pressures between 0.1 and 1.2 atm using a tunable infrared laser frequency difference spectrometer. These measurements, which study broad and narrow lines of low and high J values, are first analyzed using the Voigt and the hard collision (HC) model. It is shown that both lead to unsatisfactory results, the Voigt profile being unable to account for the line narrowing whereas the friction (narrowing) parameter deduced using the HC approach has an unphysical dependence on pressure. Furthermore, at elevated pressure where Dicke narrowing and Doppler effects are negligible, deviations between experimental and fitted profiles are still observed, indicating inhomogeneous effects due to the speed dependence of collisional parameters. In order to go further, an approach based on the kinetic impact equation accounting for both the Dicke narrowing and the speed dependence has been applied. It uses velocity-dependent broadening and shifting coefficients calculated with a semi-classical approach and two parameters. The latter, which govern the memory functions of the modulus and orientation of the H 2O velocity are considered as free parameters and determined from experiments. The results show that all profiles, regardless of pressure and of the transition, can be correctly modeled using a single set of memory parameters. This demonstrates the consistency of the approach, which is then used to analyze the different regimes that monitor velocity effects on the line profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call