Abstract

Fundamental aspects of ultracold collisions between identical bosonic or fermionic dipoles are studied under quasi-two-dimensional (Q2D) confinement. In the strongly dipolar regime, bosonic and fermion species are found to share important collisional properties as a result of the confining geometry, which suppresses the inelastic rates irrespective of the quantum statistics obeyed. A potential negative is that the confinement causes dipole-dipole resonances to be extremely narrow, which could make it difficult to explore Q2D dipolar gases with tunable interactions. Such properties are shown to be universal, and a simple WKB model reproduces most of our numerical results. In order to shed light on the many-body behavior of dipolar gases in Q2D we have analyzed the scattering amplitude and developed an energy-analytic form of the pseudopotentials for dipoles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.