Abstract

Future on-orbit servicing and assembly missions will require space robots capable of manoeuvring safely around their target. Several challenges arise when modelling, controlling and planning the motion of such systems, therefore, new methodologies are required. A safe approach towards the grasping point implies that the space robot must be able to use the additional degrees of freedom offered by the spacecraft base to aid the arm attain the target and avoid collisions and singularities. The controlled-floating space robot possesses this particularity of motion and will be utilised in this paper to design an optimal path generator. The path generator, based on a Genetic Algorithm, takes advantage of the dynamic coupling effect and the controlled motion of the spacecraft base to safely attain the target. It aims to minimise several objectives whilst satisfying multiple constraints. The key feature of this new path generator is that it requires only the Cartesian position of the point to grasp as an input, without prior knowledge a desired path. The results presented originate from the trajectory tracking using a nonlinear adaptive H∞ controller for the motion of the arm and its base simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.