Abstract
In this paper, we utilize second-order agents to address a one-dimensional persistent monitoring problem with potential agent collision and boundary-crossing problems. The objective is to minimize a sum of accumulated performance metric associated with targets over a finite time horizon by controlling the movements of agents. Different from the existing work where a collision avoidance algorithm is designed for avoiding collisions and boundary crossings, we consider these problems at the beginning of the problem formulation and further utilize Exterior Point Method (EPM) to propose a novel combinatorial objective function which guarantees a collision-free and crossing-free solution by penalizing all possible agents collisions and boundary crossings. According to Pontryagin Minimum Principle (PMP), we show that the optimal agent trajectories can be fully described by some parameters. Based on Infinitesimal Perturbation Analysis (IPA), a standard gradient descent method is proposed to obtain the optimal parameters. Our collision-free and crossing-free approach is computationally efficient as compared to the existing algorithm. Numerical examples are included to demonstrate the effectiveness of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.